The Vela and Geminga pulsars in the mid-infrared

A. A. Danilenko1, D. A. Zyuzin1, Yu. A. Shibanov1,2 \\
& S. V. Zharikov3

1Ioffe Institute, St. Petersburg, Russia

2St. Petersburg State Polytechnical Univ., St. Petersburg, Russia

3Observatorio Astronómico Nacional SPM, UNAM, Mexico
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
The Crab pulsar and the nearby knot

Near-IR images and Optical/IR SED of the Crab (Sandberg & Sollerman (2009)). The pulsar and the knot are marked by the blue and red ticks consecutively. The Crab mid-IR fluxes are compatible with the spectral extrapolation from the optical range if we account for contribution from the knot which is not spatially resolved from the pulsar in the mid-IR.
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
The AXPs

4U 0142+61

Wang, Chakrabarty & Kaplan (2006)

1E 2259+586

Kaplan et al. (2009)
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
Vela and Geminga

Vela,

- PSR B0833–45;
- age $\sim 10^4$ yr;
- distance to, 287$^{+19}_{-17}$ pc;
- associated with SNR G263.9–3.3;
- Crab-like PWN detected in X-rays only and some PWN features in γ-rays;

Geminga,

- PSR J0633+1746;
- age $\sim 10^5$ yr;
- distance to, 250$^{+120}_{-60}$ pc;
- not associated with any SNR;
- bow shock PWN detected in X-rays and γ-rays;
Outline

Introduction
The Crab pulsar
The AXPs
Vela and Geminga

Results
Identification of the pulsars in mid-IR
Photometry

Discussion
The dust disc
An unresolved PWN structure

Conclusions
Identification of the Vela pulsar

Figure: The near-IR images (Shibanov et al. (2003)) compared with the Spitzer data. The pulsar counterpart is marked by a tick line and the arrow shows the direction of its proper motion.
Identification of the Geminga pulsar

Figure: The Spitzer images vs the Subaru and HST ones (Shibanov et al. (2006)). The cross marks the pulsar position at the epoch the I-band image was obtained in. A tick line and the arrow marks the pulsar position and the direction of its proper motion.
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
Unabsorbed spectra of the Crab, Vela and Geminga pulsars from the mid-IR to the optical-UV. Crab: optical and near-IR (Sandberg & Sollerman (2009)); mid-IR (Temim et al. (2009)); Vela: UV, optical, near-IR (Romani et al. (2005), Mignani et al. (2007), Shibanov et al. (2003)); Geminga: UV, optical/near-IR (Kargaltsev et al. (2005), Shibanov et al. (2006)); optical spectrum (Martin et al. (1998))
Multiwavelength spectrum: Vela

Figure: The mid-IR fluxes are marked by a red circles.
Multiwavelength spectrum: Geminga

Figure: The mid-IR fluxes are marked by a red circles.
Outline

Introduction
 The Crab pulsar
 The AXPs
 Vela and Geminga

Results
 Identification of the pulsars in mid-IR
 Photometry

Discussion
 The dust disc
 An unresolved PWN structure

Conclusions
Possible contribution from the dust disc

Figure: The spectral fit of the Vela pulsar optical/IR SED by irradiated passive dust disc model (Vrtilek et al. (1990)). The solid line is the best-fitting result and the hatched region shows 1σ uncertainty of the fit. Here we assume that the mid-IR pulsar fluxes are described by power-law extrapolated from the optical-UV range.
Multiwavelength spectrum of Vela + disc

Figure: The same spectral fit as seen on the multiwavelength spectrum.
The Vela PWN at near-IR

Figure: The near-IR image of the Vela PWN (Shibanov et al. (2003)). The pulsar and the PWN features, o1 and counter-jet, are marked by the blue and red arrows consequently.
Whether the PWN structures can contribute significantly?

The fluxes of the PWN features, named o1 and counter-jet, are shown. If we extrapolate two point near-IR spectra of the features to mid-IR band, so we find that in mid-IR the fluxes of the features must be of same order as the pulsar fluxes. Bear in mind possible variability of the counter-jet we may conclude that this features can, at least partially, explain the observed excess.
Conclusions

- The detections of the Vela and Geminga pulsars as well as recent detections of several Crab-like PWNe (B0540, B1124, 3C 58 and G21.5) reveal strong emission excess in the mid-IR band, that was rather difficult to expect in advance.
- The question arise: What is the nature of the excess? Is it the sign of the hypothetical fall-back discs?
- Further studies of these and other pulsars in the mid-IR and especially submillimetre bands are necessary to get the answer.
Conclusions

- The detections of the Vela and Geminga pulsars as well as recent detections of several Crab-like PWNe (B0540, B1124, 3C 58 and G21.5) reveal strong emission excess in the mid-IR band, that was rather difficult to expect in advance.
- The question arise: What is the nature of the excess? Is it the sign of the hypothetical fall-back discs?
- Further studies of these and other pulsars in the mid-IR and especially submillimetre bands are necessary to get the answer.
Conclusions

- The detections of the Vela and Geminga pulsars as well as recent detections of several Crab-like PWNe (B0540, B1124, 3C 58 and G21.5) reveal strong emission excess in the mid-IR band, that was rather difficult to expect in advance.

- The question arise: What is the nature of the excess? Is it the sign of the hypothetical fall-back discs?

- Further studies of these and other pulsars in the mid-IR and especially submillimetre bands are necessary to get the answer.
Thank you!
The Vela PWN

The mid-IR image in comparison with the Chandra one (Helfand et al. (2001)). There is no counterpart of the X-ray torus-like structure in the mid-IR.
Figure: The large scale structure of the Vela PWN at 8 μm and soft X-rays. East boundary of the X-ray plerion correlate with the west boundary of the a brigth extended emission visible in mid-IR.
Figure: Comparison of the mid-IR and HST/NICMOS near-IR (Shibanov et al. (2006)) images with the *Chandra* ones (Pavlov et al. (2010)).
The Geminga PWN

Figure: The transformation of the compact PWN from X-rays, through optical/near-IR, to the mid-IR.
Large-scale PWN structure

Figure: The extended tail at 5.8 μm and X-rays.