DESIR status report

- EQUIPEX funding for DESIR
- Cooler SHIRaC
- High-resolution separation HRS
- PIPERADE
- Neutron multiplicity detector TETRA
- Neutron ToF detector

DESIR EQUIPEX funding Phase 1 of the project

Phase1: Construction (2012-2016) + Operation (2017-2019)

- Infrastructure: beam transport tunnels + reduced experimental area
- S3 -> DESIR beam line + 10 m inside the experimental hall
- Commissioning of the PIPERADE GIPB
- Implementation of an identification station

DESIR buildings - Surface reduction

Smaller experimental hall

Basement and beam transport tunnels: unchanged

DESIR Hall: initial drawing

Total surface (HxL) 31.3x51.54 = 1613 m² Experimental area: 30.6x44.3 = 1356 m² Useful surface: 21.9x41.3 = 904 m²

Estimate of the project cost

Investment costs:

• WP1: Buildings (2940 m ²)		7565 k€
• WP2: Beam lines (100+40 m)		5460 k€
•WP3: General Purpose Ion Buncher (GPIB)		390 k€
WP4: Identification station		209 k€
WP5.1: Radioprotection Lab		87 k€
WP5.2: Mechanical workshop		57 k€
WP5.3: Stable ion sources		59 k€
	total:	~14 M€

Running costs: ~220 k€/y (15 weeks/y)

EQUIPEX 2011:

request ~ 14 M€ (investment, 36 months) + 1 M€ (operation, 54 months)
granted 9 M€ -> 8 M € (investment, 54 months)
+ 1 M€ (operation, 36 months)

Complementary funding:

- experimental equipment: ~ 5M€ (DECA)
- SPIRAL2 Phase2 High Resolution Separator: 1.7 M€ (CPER)

Cost reduction

Smaller experimental area (INGEROP preliminary study 11/05/2012):

- ~20% smaller basement =230 k€ reduction -> not considered
- ~40% smaller experimental hall = 735 k€ reduction -> <u>considered</u>

➢ DESIR infrastructure costs (EQUIPEX) = 6.65 M€

Phasing of the beam lines implementation

- S3 -> DESIR: 1.7 M€
- 10 m inside the DESIR hall: 0.4 M€

-> DESIR beam lines cost (EQUIPEX): 2.1 M€, including contributions from GANIL (0.6 k€) and outside (0.4 k€, asked to the Basse-Normandie Region in April 2012)

Outside EQUIPEX: connection to Spiral2 Production = 1.3 M€
Outside EQUIPEX: connection to Spiral 1 = 1.5 M€
+ DESIR building extension (600 m²) : > 1 M€ ?
+ 40 m of beam lines inside DESIR : 1.6 M€

-> Missing funding: 5.4 M€

DESIR Timetable

T0 for the beginning of the Phase2 of SPIRAL2 = January 2014

- Yellow: EQUIPEX
- White: outside EQUIPEX

EQUIPEX grant distribution

T0 for the beginning of the Phase2 of SPIRAL2 = January 2014

		Phase 1			Phase 2				
		2012	2013	2014	2015	2016	2017	2018	2019
WP0-Coordination	0								
WP1-Building	7648			665	3204	2779	255	261	255
WP2-Beam lines	1131		195	568	287	81	62	62	62
WP3-Identification station	94			44	50				
WP3-GPIB	0								
WP5-User facilities	55			28	28				
WP6-Applications	5				5				
Management	111	5.8	14	11	21	16	16	10	16
		5.8	209	1315	3594	2875	333	333	333
Dhaca 1 9000									

Phase 1	8000
Phase 2	1000
Total	9000

Manpower

- Only permanent staff
- Reduced by ~140 m.m

Total GANIL	228
Total IPNO	74
Total CENBG	29
Total IPHC	24
Total LPC	20
Total CIMAP	4.5
Total	380

Work Package	Partner Phase1 (m.m)		Phase2 (m.m)
WP0 - Project coordination	GANIL	14.4	19.6
WP1 - Infrastructure building and equipment operation (GANIL)	GANIL	33.3	38.7
	IPNO	73.6	
WP2 – Beam lines construction	GANIL	85.2	17.3
and operation (IPNO)	CENBG	12.2	0.0
	TOTAL	171.0	17.3
	IPHC	24.1	0.0
	LPC	1.5	0.0
WP3 – Identification station (IPHC)	GANIL	0.0	4.7
	TOTAL	25.6	4.7
	LPC	6.0	8.7
WP4 – General Purpose ion Buncher	GANIL	6.0	8.7
(GANIL/LFC)	TOTAL	12.0	17.3
WP5 – User facilities (CENBG)		5.0	
	LPC	3.0	0.7
wP5.1 – Stable ion source	GANIL		1.5
WP5.2 – Mechanical workshop			
WP5.3 – Radioprotection lab			
M/DE 4 - EDICS control/commando	CENBG	6.0	6.0
	TOTAL	14.0	8.2
WP6 – Applications (GANIL)			
WP6.1 – Nuclear energy (GANIL)	GANIL	2.7	1.8
WP6.2 – Pluridisciplinary (CIMAP)	CIMAP	2.7	1.8
WP6.3 – Industrial applications (GANIL)	GANIL	2.7	1.8
	Total	8.1	5.4
Total (m.m) 379.6		278.4	101.2

DESIR-EQUIPEX: Summary

Requested: 14 M€ (36 months) + 1 M€ (54 months) <-> Granted: 8 M€ + (54 months) + 1M€ (36 months)

- > ~40% smaller experimental hall
- Phasing of the beam line implementation
- > 0.6 M€ from GANIL + 0.4 M€ from outside (still missing)
- > Longer construction phase: commissioning in 2017
- > Delayed Physics program
- > 5.4 M€ missing to complete the project (including ~1 M€ for a hall extension)

Cooler SHIRaC

Adaptation to nuclear environement:

- extraction from the top
- quick RF connection/disconnection
- top flange is designed for Vinyl sleeve for radioactive containment

Cooler SHIRaC

Energy spread

Energy spread with new and old extraction lens The energy spread is still under investigations

High-resolution separator HRS

- Mechanical design and integration of HRS to fulfill safety requirements for "yellow zone" ready
- Dipoles magnets:
 - Dipoles designed to obtain best homogeneity in the central zone
 - 3D simulations have been done using software OPERA
 - Field transversal homogeneity of 10^{-5} is obtained over a zone of \pm 150 mm
 - Field maps: 3D field maps used in ion-optical simulations with ZGOUBY
 - Study of curvature of pole faces is under the way to correct second order aberrations
 - Final results are expected by end of June 2012
 - Full specifications and detailed mechanical design of the magnets will be provided
 - Call for Tender document ready before end of the summer 2012
 - Ordering of the dipoles foreseen for beginning of 2013
- Misalignment studies:
 - investigate effects of misalignments on the resolution of the HRS
 - Which level of precision required for the mechanical design?
 - Which precision for the (re)positioning?
 - (Re)Positioning precision of ± 0.25 mm induces decrease on the resolution from 31000 to 28000
 - Rotations and tilts of ± 0.02 degrees reduce the HRS resolution to ~20000
 - The most sensible element is the mid-plane multipole, followed by the dipole magnets
- A project review of the HRS is to be scheduled after summer

Piège de Penning pour des ions radioactifs pour DESIR

Aim: purify and bunch large samples of radioactive ions and deliver them to users It consists of a stable ion source, an RFQ cooler and buncher, a double-Penning trap system

Collaboration: CENBG, CSNSM, GANIL, MPIK Heidelberg

Progress:

• Source:

- former MISTRAL source being installed at CENBG
- SIMEON simulation for extraction optics under way
- RFQ:
 - decision to build ISCOOL type RFQ
 - preliminary simulations for transmission and cooling performed at CENBG
- Penning trap:
 - simulations started at CSNSM
 - experimental tests started at MPIK
- Detection system:
 - tests with an MCP and a channeltron under way at CENBG

500 1000 1500 2000 2500 3000 3500 4000 number of ions simulated in the Penning trap

TETRA at IPN Orsay

Measurement of β -n branching ratios

• TETRA installed at IPNO with BEDO β -decay station

• 60 % efficiency reached for large energy range

• measurements with ⁸³Ga and ⁸⁴Ga performed this June

TETRA at IPN Orsay

tape station

borate polyethylene shielding

BEDO line

Neutron ToF detector

Measurement of neutron energies 100 liquid scintillator modules from LPC Caen and CIEMAT Madrid

aim:

- measure neutron energy spectra for astrophysics and nuclear energy
- study rare phenomena like $\beta 2n$, $\beta 3n$, ... decays

status:

- 30 modules purchased by CIEMAT
- support structure constructed at CIEMAT
- fast DAQ system built and commissioned by LPC

- DESIR funding scheme proposed to French ANR
- Additional funding needed for phase 1 (0.4 M€) and phase 2 (5.4 M€)
- Continued efforts to improve the capabilities of SHIRaC
- HRS dipoles to be ordered beginning of 2013
- PIPERADE project funded and started
- First TETRA experiments soon at IPN Orsay
- Neutron energy detector under construction
- Progress also on other setups like MLL trap, LUMIERE, BELEN, TAGS....

Limiting factor: SPIRAL2 phase 2 schedule