Purification techniques for low energy
Radioactive Ion Beams at SPIRAL2

Stéphane Grévy
CENBG
grevy@in2p3.fr

Many thanks to:
Pierre Chauveau
Pierre Delahaye
Teresa Kurtukian-Nieto
Laurent Serani
Pauline Ascher
Enrique Minaya
and the PIPERADE team
Outlook

1- Purification techniques for low energy RIB’s @ GANIL/SPIRAL2
 a- Magnetic spectrometer
 b- Multi-reflections time-of-flight spectrometer (MR-TOF-MS)
 c- Penning trap

2- Performances and Status of development of such devices @ GANIL/SPIRAL2
 a- HRS@DESIR
 b- PILGRIM @ S3-LEB
 c- PIPERADE@DESIR

3- Comparative performances / Complementarities

HRS : High Resolution Spectrometer
PILGRIM : Piège à Ion Linéaire du Ganil pour la Résolution des Isobares et leur mesure de Masse
PIPERADE: Piège de Penning pour les ions Radioactifs à DESir
1- Purification techniques for low energy RIB’s

Introduction

- The production methods of radioactive beams are non selective
 → powerful selection methods are mandatory

- The important criteria are:
 - the selectivity: the capability to separate the ions of interest from contaminants
 - the efficiency: keep the maximum of the ions of interest
 - the rapidity: the time needed to separate the ions of interest from contaminants

- Main beam characteristics:
 all nuclei are extracted from the source
 - with the same charged state (usually 1+)
 - with the same low energy (few to 60 keV)
 → no "universal" Z selection (depends of the source, use of lasers...)
 → need for an isobaric selection through mass/velocity
 - with “poor” optic qualities (emittance of few 10’s of \(\pi \).mm.mrad)
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

Principle: Mass separation by a magnet

\[B_\rho = \frac{M \cdot v}{Q} \]
\[Q = 1^+ \]

Different Masses \(\rightarrow \) different deviations

With "standard" systems \(\rightarrow \) \(R = \frac{M}{\Delta M} \approx 400 \)

- able to separate isotopes/isotones
 OK if Z selection
- not able to separate isobares

\(^{132}\text{Sn} \): mass = 131.9178157
\(^{132}\text{Sb} \): mass = 131.9144669

\(R = 39392 \) \(\rightarrow \) gain of \(\approx 100 \) needed on \(R \)

how to obtain this factor? \(\rightarrow \) HRS
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

- \(D \) : dispersion of the system
- \(2x_{00} \) : beam size
- \(M \) : magnification
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

\(D \) : dispersion of the system
\(2x_{00} \) : beam size
\(M \) : magnification
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

\(D \) : dispersion of the system
\(2x_{00} \) : beam size
\(M \) : magnification

\[D \propto \frac{\Delta B}{B} : \text{magnet homogeneity} \]
\(\rho_M \) : magnet curvature
\(\theta_M \) : magnet angle
\(A_M \) : "filled" area of the magnet
...

Stéphane Grévy
Spiral2 Week 2014 - October 7th
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

- \(2x_{00} \): beam size
- \(M \): magnification
- \(D \): dispersion of the system

standard 0.005m (5mm)
standard \(M=1 \)
standard 2m (2cm/%)

\[R = \frac{2}{0.005 \times 1} = 400 \]
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

- \(2x_{00} \): beam size
- \(M \): magnification
- \(D \): dispersion of the system

\[R = \frac{2}{0.005 \times 1} = 400 \]

HRS \(\cdot 2x_{00} \): 1mm

\[R = \frac{2}{0.001 \times 1} = 2000 \]

→ need to cool the beam before the HRS: RFQ SHIRaC
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

2\(x_{00} \): beam size

M : magnification

D : dispersion of the system

\[R = \frac{2}{0.005 \cdot 1} = 400 \]

HRS • 2\(x_{00} \): 1mm

• "used area" : *3 \(\rightarrow\) "dedicated" optics between SHIRaC and the first magnet

\[R = \frac{2 \cdot 3}{0.001 \cdot 1} = 6000 \]
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

2\(x_{00}\) : beam size

M : magnification

D : dispersion of the system

\[R = \frac{2}{0.005 \times 1} = 400 \]

HRS

• \(2x_{00}\) : 1mm
 • "used area" : *3
 • \(\rho\) : *1.7

\[R = \frac{2 \times 3 \times 1.7}{0.001 \times 1} = 10200 \]
1- Purification techniques for low energy RIB’s

a- Magnetic spectrometer

\[R = \frac{D}{2x_{00} \cdot M} \]

2\(x_{00}\) : beam size

M : magnification

D : dispersion of the system

\[R = \frac{2}{0.005 \cdot 1} = 400 \]

HRS

- 2\(x_{00}\) : 1mm
- "used area" : *3
- \(\rho_M\) : *1.72
- \(\theta_M\) : *3

\[R = \frac{2 \cdot 3 \cdot 1.7}{0.001 \cdot 1} = 31000 \]
1- Purification techniques for low energy RIB’s

b- MR-TOF-MS

Principle: Time-of-Flight separation in a linear trap

Nuclei extracted with the same energy $\rightarrow \Delta M \leftrightarrow \Delta v$

$^{132}\text{Sn} : \text{mass} = 131.9178157 \rightarrow v = 0.0209486 \text{cm/ns}$

$^{132}\text{Sb} : \text{mass} = 131.9144669 \rightarrow v = 0.0209488 \text{cm/ns}$

@ 5 keV

In 10 msec \rightarrow - Flight pass: 2 km ! \rightarrow multi reflections (~4000) in a trap

- $\Delta_L : 2 \text{ cm}$
- $\Delta_{TOF} : 100 \text{ ns}$

From RFQ cooler

• Injection
• Trapping
• ToF separation
• Ejection
1- Purification techniques for low energy RIB’s

b- MR-TOF-MS

- Energy spread → need "time focussing"

Generalization: Mirrors optimization to have a Flight time independant from:

- energy
- transverse position
- divergence

Need: Nuclei with higher energy to have longer revolution time
→ adjustment of the slope of the mirror voltage

$$E$$

$$E + \delta E$$

"optimized" resolution power
1- Purification techniques for low energy RIB’s

c- Penning trap

Principle: Mass separation in a trap

1) trapping in x, y and z

- use of a quadrupolar potential
- Laplace law: \(\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \)

→ cannot confine in all the directions with a single potential (escape axis)

\[\phi(z, r) = \frac{U_{dc}}{2d^2} \left(z^2 - \frac{1}{2} r^2 \right) \]

\[\frac{d^2 x}{dt^2} = \omega_c \frac{dy}{dt} + \frac{\omega_{0z}^2}{2} x \]
\[\frac{d^2 y}{dt^2} = -\omega_c \frac{dx}{dt} + \frac{\omega_{0z}^2}{2} y \]

harmonic oscillation in z

\[\omega_{0z} = \sqrt{\frac{2qU}{m r_0^2}} \]
1- Purification techniques for low energy RIB’s

2) purification

Mass selection by sideband buffer gas cooling:

- Dipolar excitation at the magnetron frequency: \[\omega_- = \frac{\omega_c}{2} - \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}} \]
 - mass independant \(\rightarrow \) all ions to a higher radius

- Combining the effect of buffer gas and a quadrupolar excitation at \((\omega_+ + \omega_z) \)
 - buffer gas: cyclotron motion is cooled, magnetron motion increases
 - quadrupolar excitation: coupling the two radial modes
 \(\rightarrow \) radii of both motions are cooled
 \(\rightarrow \) mass-selective centering
Outlook

1- Purification techniques for low energy RIB’s @ GANIL/SPIRAL2
 a- Magnetic spectrometer
 b- Multi-reflections time-of-flight spectrometer (MR-TOF-MS)
 c- Penning trap

2- Performances and Status of development of such devices @ GANIL/SPIRAL2
 a- HRS@DESIR
 b- PILGRIM @ S3-LEB
 c- PIPERADE@DESIR

3- Comparative performances / Complementarities
2- Performances and Status of development of such devices @ GANIL/SPIRAL2
2- Performances and Status of development of such devices @ GANIL/SPIRAL2

a- SHIRaC+HRS@DESIR

- Goal: "on-line" isobar purification
- Intensity: up to 1μA
- Cooling time ~ msec
- Design resolution: $M/\Delta M = 31\,000$
 + Misalignments $\Rightarrow M/\Delta M > 20\,000$

<table>
<thead>
<tr>
<th></th>
<th>X shift (mm)</th>
<th>Y shift (mm)</th>
<th>X Tilt (mrad)</th>
<th>Y Tilt (mrad)</th>
<th>Θ (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±3.5</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>HQ1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.35</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>D1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.35</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>M</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±3.5</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>D2</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.35</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>HQ2</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.35</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
<tr>
<td>QQ2</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±3.5</td>
<td>±3.5</td>
<td>±3.5</td>
</tr>
</tbody>
</table>
2 - Performances and Status of development of such devices @ GANIL/SPIRAL2

a - SHIRaC+HRS@DESIR

Shiracq RFQ

- New measurements for emittances and energy spread
 - Transmission: above 70%
 - Emittance: 2 π.mm.mrad @60 keV and up to 1 μA
 - Energy spread: around 1.5 eV for 1 μA
- Gas recycling tested. To be implemented
- Modifications of design to fulfil 'ALARA' environment to be done

HRS

- Global optical design published
- Performance of the HRS considering misalignment/positioning precision of different elements
 m/Δm = 20,000 for a 3π mm mrad 60keV beam and energy spread ~1 eV.
- Mechanical design and integration ready
- Dipoles delivered @ GANIL (july2014)
- Magnetic field mapping scheduled for 2015
- Manufacturing of other elements by CENBG
- Setup completed @ CENBG end of 2015
- Tests @ CENBG up to 2018
2- Performances and Status of development of such devices @ GANIL/SPIRAL2

b- PILGRIM @ S3-LEB

- goal: isobar purification + mass measurement
- intensity: 10^3 ions/pulse
- cycle time: 10 msec
- Design resolution: $M/\Delta M = 10^5$ and $\sigma M/M \approx 5.10^{-7}$

Simulations on SIMION:
- Potentials
- Geometry

<table>
<thead>
<tr>
<th>Geometry</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Kansal</td>
<td>2226.5</td>
</tr>
<tr>
<td>P.Chauveau</td>
<td>29048.0</td>
</tr>
<tr>
<td></td>
<td>42181.4</td>
</tr>
</tbody>
</table>

$R > 3.10^5$ have been obtained in simulation for realistic beams (B.Kansal)
b- PILGRIM @ S3-LEB

Planning

PILGRIM:

- 10/2015: end of mechanical design
- 10->12/2015: production/purchase of mechanical parts
- 01->06/2016: assembly of PILGRIM
- 09->12/2016: tests at LIRAT?
c- PIPERADE@DESIR

- goal: isobaric purification + accumulation for precision measurements
- intensity: up to 10^6 ions/pulse
- cycle time: 100-300 msec
- Design resolution: $M/\Delta M > 10^5$

Increasing the number of ions makes the re-centering inefficient

Additional potential created by the cloud itself
→ f-shifts, peak broadening, screening effects

Alternative techniques...
- simulations @ CSNSM and MPIK
- experimental tests @ MPIK
- Performances and Status of development of such devices @ GANIL/SPIRAL2

c- PIPERADE@DESIR

- **Febiad Ion source:**
 - renovation completed (SPIRAL2 compatible)
 - emittance characterized

- **General Purpose Ion Buncher:**
 - mechanics and electronics completed
 - ready to be tested

- **Penning Trap**
 - simulations underway
 - mechanical design ready
 - construction beginning of 2015
 - magnet ordered (delivery expected 10/15)
 - tests@CENBG in 2016
2- Performances and Status of development of such devices @ GANIL/SPIRAL2

c- PIPERADE@DESIR

- Febiad Ion source:
 - renovation completed (SPIRAL2 compatible)
 - emittance characterized
- General Purpose Ion Buncher:
 - mechanics and electronics completed
 - ready to be tested
- Penning Trap
 - simulations underway
 - mechanical design ready
 - construction beginning of 2015
 - magnet ordered (delivery expected 10/15)
 - tests@CENBG in 2016
2- Performances and Status of development of such devices @ GANIL/SPIRAL2

c- PIPERADE@DESIR

- Febiad Ion source:
 - renovation completed (SPIRAL2 compatible)
 - emittance characterized

- General Purpose Ion Buncher:
 - mechanics and electronics completed
 - ready to be tested

- Penning Trap:
 - simulations underway
 - mechanical design ready
 - construction beginning of 2015
 - magnet ordered (delivery expected 10/15)
 - tests@CENBG in 2016
3- Comparative performances / Complementarities

- HRS and MR-TOF-MS/Penning Trap have different philosophy
- MR-TOF-MS and Penning Trap are complementary

<table>
<thead>
<tr>
<th></th>
<th>HRS</th>
<th>MR-TOF-MS PILGRIM</th>
<th>Penning Trap PIPERADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals</td>
<td>Isobaric purification</td>
<td>Isobaric purification Mass measurement</td>
<td>Isobaric/Isomeric purification and accumulation</td>
</tr>
<tr>
<td>Intensity</td>
<td>10^{13} pps</td>
<td>10^3 ions/pulse - 100Hz</td>
<td>10^5 ions/pulse - 5/10Hz</td>
</tr>
<tr>
<td>Timing</td>
<td>N/A</td>
<td>10 msec</td>
<td>100-200 msec</td>
</tr>
<tr>
<td>Resolution M/ΔM</td>
<td>>20000</td>
<td>10^5</td>
<td>$>10^5$</td>
</tr>
<tr>
<td>Efficiency</td>
<td>100%</td>
<td>>50%</td>
<td>>50%</td>
</tr>
<tr>
<td>Possible developments</td>
<td>N/A</td>
<td>identification device ("tagging")</td>
<td>In trap decay spectroscopy ...</td>
</tr>
</tbody>
</table>

Rq1 : HRS would be able to make a "pre"-purification before PIPERADE
Rq2 : a MR-TOF-MS device could be installed in the DESIR hall in the future