Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTH, Meudon

M. F, F. Grill, J. Margueron, D. Page, N. Sandulescu,
arXiv/nucl-th/0910.5488

MODE-SNR-PWN 2010
Study of the cooling of a neutron star (NS) with fast cooling. Cooling time essentially determined by the properties of the inner-crust ie.:

- the thickness,
- the properties of the baryonic matter.

Composition of the inner-crust:

- ultrarelativistic electrons,
- unbound neutrons that can be superfluid,
- nuclear clusters, whose influence on the superfluid properties has to be taken into account.
Solve the relativistic heat equation in the whole NS using NSCool\(^1\) (D. Page),

- with a model of NS that is almost completely consistent (SLy4 nuclear interaction),
- using new calculations for the specific heat of unbound neutrons in the inner-crust.
- → estimation of the cooling time.

\(^1\)available on http://www.astroscu.unam.mx/neutrones/NSCool/
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction

1S_0 neutron pairing

HFB-FT calculations

- Mean field: Skyrme force SLy4 (Chabanat et al. 1997),
- Nuclear clusters: WS cells from Negele & Vautherin (1973),
- Pairing correlations:

\[
V(r - r') = V_0 \left[1 - \eta \left(\frac{\rho(r)}{\rho_0} \right)^\alpha \right] \delta(r - r'),
\]

with V_0, η, and α simulating two pairing scenarios:
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction

1S_0 neutron pairing calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

1S_0 neutron pairing

![Graphs showing thermalization time and specific heat for weak and strong pairing](image-url)
Neutron star model

Equation of state (EoS):

- **Core**: Douchin & Haensel (2001)
 - based on the SLy4 effective nuclear interaction (the same as in the C_V calculations),
 - npeμ composition.

- **Inner-crust**: Negele & Vautherin (1973)
 - $4 \times 10^{11} \leq \rho \leq 1.6 \times 10^{14}$ g cm$^{-3}$
 - density functional,
 - Hartree-Fock calculations.

- **Outer-crust**: Haensel, Zdunik & Dobaczewski (1989)
 - Skyrme effective nucleon-nucleon interaction (Dobaczewski, Flocard & Treiner, 1984),
 - Hartree-Fock-Bogoliubov (HFB) calculations.

- **Effective mass**: Skyrme nuclear interaction.
Cooling model

Heat equation (Thorne, 1977)

\[
\frac{\partial}{\partial r} \left(\frac{K r^2}{\Gamma(r)} e^\phi \frac{\partial}{\partial r} (T e^\phi) \right) = r^2 \Gamma(r) e^\phi \left(C_V \frac{\partial T}{\partial t} + e^\phi Q_\nu \right),
\]

- \(\Gamma = (1 - 2Gm(r)/rc^2)^{-1/2} \), \(\phi \) the gravitational potential,
- \(K \) the thermal conductivity,
- \(Q_\nu \) the neutrino emissivity,
- \(C_V \) the specific heat.

Boundary conditions:
- \(T(r, t = 0) = T_i \)
- \(\rho = 10^{10} \text{ g cm}^{-3} \), model of non-accreted envelope (Potekhin et al. 1997).
Cooling model

Thermal conductivity

Core:
- electrons & muons (Shternin & Yakovlev, 2007)
- nucleons (Baiko et al. 2001)

Crust:
- electron-ion (Gnedin et al. 2001)
- electron-electron (Shternin & Yakovlev, 2006)
Neutrino emissivity (1)

Core :
- bremsstrahlung processes,
- MURCA,
- DURCA imposed for \(\rho \geq 5 \times 10^{14} \, \text{g cm}^{-3} \) → fast cooling.

Graph showing
- \(\log_{10} (Q_{\nu} \, \text{[erg s}^{-1} \text{cm}^{-3}]) \)
- \(\log_{10} (\rho \, \text{[g cm}^{-3}]) \)
- \(T=10^9 \, \text{K} \)
- Bremsstrahlung, MURCA, DURCA

\(\rho \geq 5 \times 10^{14} \, \text{g cm}^{-3} \)
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTh, Meudon

Introduction

Neutron specific heat calculations

Cooling model
Neutron star model
Heat equation

Cooling
Crust thermalization
Scaling relations
Conclusion

Neutrino emissivity (2)

Crust:
- plasmon decay,
- $e^- - e^-$, $e^- - Z$ & $n-n$ bremsstrahlung.

Superfluidity:
- reduction of the emissivities,
- Cooper pair breaking and formation processes (PBF).

Cooling model

$T = 10^9$ K

Plotted curves:
- plasmon
- $e^- - e^-$ brems
- $e^- - Z$ brems
- $n-n$ brems
- PBF n^1S_0 weak
- PBF n^1S_0 strong
- PBF p^1S_0
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTH, Meudon

Introduction

1 S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Cooling model

Specific heat (1)

Electrons:

- C_V of a uniform, degenerate gas.

Ions in the crust:

- solid-liquid phase transition included,

Protons in the core:

- 1S_0 pairing from Takatsuka (1973),
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw &
LUTh, Meudon

Introduction

1 S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Specific heat (2)

Unbound neutrons:

- in the core:
 3P_2 pairing: model "a" from Page et al. 2004 with $T_c^{\text{max}} \sim 10^9$ K,

- in the inner-crust:
 1S_0 pairing: fits of the previous calculations.

Unbound neutrons:

- in the core:
 3P_2 pairing: model "a" from Page et al. 2004 with $T_c^{\text{max}} \sim 10^9$ K,

- in the inner-crust:
 1S_0 pairing: fits of the previous calculations.
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTh, Meudon

Introduction

1\textsubscript{s}\textsubscript{0} neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

\[M=1.6 \, M_\odot \, \text{&} \, T_i = 5 \times 10^9 \, K \]

No pairing Weak pairing Strong pairing

\begin{tabular}{l}
\textbf{\textit{T}} \wedge \textbf{\textit{e}} \\
- \textbf{\textit{φ}} [K] \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{r}} [km] \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 10^{-5} \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 10^{-4} \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 10^{-3} \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 10^{-2} \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 10^{-1} \\
\end{tabular}

\begin{tabular}{l}
\textbf{\textit{t}} (yr) = 1 \\
\end{tabular}

No pairing

Weak pairing

Strong pairing
Thermalization time and specific heat of neutron stars crust

Introduction

S_0 neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Cooling time t_w: $T_{\infty}(t = t_w)$ has its most negative slope.
Scaling relations

$M \in [1.4, 2.0]~M_\odot$ & $T_i = 5 \times 10^9$ K

Lattimer et al. 1994, Gnedin et al. 2001
Scaling parameter : $\alpha = \left(\frac{\Delta R_{\text{crust}}}{1 \text{ km}} \right)^2 \left(1 - \frac{2GM}{c^2 R} \right)^{-3/2}$
Conclusion (1)

New calculations of the specific heat of neutrons in the crust:
- HFB at finite temperature;
- inclusion of the effects of:
 - the temperature,
 - the nuclear clusters,
 - the pairing correlations.

Study the thermalization of NS crusts in the fast cooling scenario for an almost completely consistent model (SLy4).
Conclusion (2)

Results
- The pairing correlations have a strong influence on cooling.
- The cluster structure of the inner-crust has a non-trivial influence.

Perspective
- Performing cooling calculations in WS cells calculated for the SLy4 force.
Thermalization time and specific heat of neutron stars crust

M. FORTIN
CAMK, Warsaw & LUTh, Meudon

Introduction

1S_0 neutron specific heat calculations

Cooling model
Neutron star model
Heat equation

Cooling
Crust thermalization
Scaling relations

Conclusion
Crust thermalization

Thermalization time and specific heat of neutron stars crust

Introduction

\[S_0 \] neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion

Cooling curves & pairing scenarios - \(M = 1.6 \, M_\odot \)

\[T_i = 5 \times 10^9 \, K \]

\[\log_{10}(T_{\text{eff}}) \, [K] \]

Time [years]

\(T_i = 5 \times 10^9 \, K \)

- no pairing
- weak pairing
- strong pairing
- weak pairing (NC)
- strong pairing (NC)
Thermalization time and specific heat of neutron stars crust

Introduction

S neutron specific heat calculations

Cooling model

Neutron star model

Heat equation

Cooling

Crust thermalization

Scaling relations

Conclusion
Parametrization of C_V^n

$$C_V^n = (1 - x_{cl})C_V^{cl} + x_{cl}RC_V^q$$

with:

- C_V^{cl} the specific of non-superfluid unbound neutrons in the classical regime,
- C_V^q the specific of non-superfluid unbound neutrons in the quantum regime,
- x_{cl} the factor describing the transition between classic and quantum behavior,
- R the factor simulating the reduction due to pairing correlations.
Thermalization time and specific heat of neutron stars crust

M. FORTIN CAMK, Warsaw & LUTH, Meudon

Introduction

$1S_0$ neutron pairing

Parametrization of C_V^n

\[C_V^n = x_{cl} R C_V^q + (1 - x_{cl}) C_V^{cl} \]

with:

- the factor describing the transition between classic and quantum behavior,

\[x_{cl} = \left(1 + e^{5(\frac{\pi T}{\varepsilon_F} - 1)} \right)^{-1} \]

- with $\varepsilon_F = \hbar^2 k_F^2 / 2m_n^*$ the Fermi energy at zero T.

For normal, unbound neutrons:

\[C_V^q = \frac{1}{6} \left(\frac{2m_n^*}{\hbar^2} \right)^{3/2} \varepsilon_F^{1/2} T \times \left[1 - \frac{7}{40} \left(\frac{\pi T}{\varepsilon_F} \right)^2 - \frac{155}{896} \left(\frac{\pi T}{\varepsilon_F} \right)^4 \right]. \]
Thermalization time and specific heat of neutron stars crust

$^{1}S_{0}$ neutron pairing

Parametrization of C_{V}^{n}

$C_{V}^{n} = x_{cl} R C_{V}^{q} + (1 - x_{cl}) C_{V}^{cl}$

with:

- For classic neutrons:

 $$C_{V}^{cl} = \frac{3}{2} \rho_{gas},$$

 with, for $T < T_{gas} = 5.5 \text{ MeV},$

 $$\rho_{gas} = \rho_{n}(T = 0) + \frac{T}{T_{gas}} (\rho_{max} - \rho_{n}(T = 0)),$$

 for $T > T_{gas} = 5.5 \text{ MeV},$

 $$\rho_{gas} = \rho_{max}.$$

 with ρ_{max} for neutrons uniformly distributed in the cell.
Thermalization time and specific heat of neutron stars crust

1S_0 neutron pairing

Parametrization of C_V^n

$$C_V^n = x_{cl} R C_V^q + (1 - x_{cl}) C_V^{cl}$$

with the factor simulating the reduction due to pairing correlations:

$$R = R_{YL}(u) f_1(T, \Delta_o, a_0, a_1, a_3) (1 - f_2(T, \Delta_o, a_0, a_2, a_3)),$$

where

- $R_{YL}(u)$ is the superfluid reduction factor for uniform neutron matter (Levenfish et al., 1994),
- f_1 & f_2 are two functions describing the normal/superfluid transition, depending on:
 - Δ_o the pairing energy gap in the neutron gas at $T=0$,
 - a_0, a_1, a_2, a_3 four parameters fitted to reproduce the results the HFB calculations.
Scaling relations

\[t_w = \alpha t_1 \quad \text{with} \quad \alpha = \left(\frac{\Delta R_{\text{crust}}}{1 \text{ km}} \right)^2 \left(1 - \frac{2GM}{c^2 R} \right)^{-3/2} \]

\begin{center}

\begin{tabular}{|l|c|c|}
\hline
\textbf{Model of neutron superfluidity} & \textbf{\(t_w \)} & \textbf{\(t_1 \)} \\
\hline
No superfluidity & 76.3 & 66.4 \\
Weak pairing & 43.1 & 37.4 \\
Strong pairing & 24.7 & 21.5 \\
\hline
\end{tabular}

\end{center}

\(M = 1.5M_\odot \) & \(T_i = 5 \times 10^9 \) K