Non-empirical energy functionals from low-momentum interactions
I. Introduction to Energy Density Functional methods

T. Duguet1,2 \quad J. Sadoudi 1

1DSM/Irfu/SPhN, CEA Saclay, France
2National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, Michigan State University, USA

Ecole Joliot-Curie, Lacanau, Sept. 27th - Oct 3rd, 2009
Lecture series

Outline

- Introduction to energy density functional methods
 - Basics of formalism
 - Empirical energy functionals: form, performances and limitations
 - Towards non-empirical energy functionals
- Low-momentum interactions from renormalization group methods
- The building of non-empirical energy functionals
Take-away message

Theoretical methods

- Ab-initio methods = A-body problem solved in terms of vacuum $H(\Lambda)$
- Ab-initio methods limited to $A \leq 16$ plus a few doubly-magic nuclei
- Approaches to heavier nuclei need to be benchmarked by ab-initio methods

Energy density functional method

- Two successive levels of implementation: single reference and multi reference
- Empirical energy functionals successful but lack predictive power
- Need to connect the energy functional to vacuum $H(\Lambda) = \text{non-empirical EDF}$
Outline

1 Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2 Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3 Bibliography
Outline

1 Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2 Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3 Bibliography
Outline

1 Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2 Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3 Bibliography
What is low-energy nuclear physics interested in?

In generic terms

- **Spectrum** of $H |\Psi_i^A\rangle = E_i^A |\Psi_i^A\rangle$ for all $A = N + Z$
- Observables for each state, e.g. $r^2 \equiv \langle \Psi_i^A | \sum_k A \hat{r}_k^2 |\Psi_i^A\rangle / A$
- **Decays** between $|\Psi_i\rangle$, i.e. nuclear, electromagnetic, electro-weak

Ground state

- Mass, deformation

Spectroscopy

- Excitations modes

Limits

- Drip-lines, halos

Reaction properties

- Fusion, transfer...

Heavy elements

- Fission, fusion, SHE

Astrophysics

- NS, SN, r-process
How does that translate to low-energy nuclear theory?

Goals for low-energy nuclear theory

- Model the unknown nuclear Hamiltonian H
- Solve A-body problem and describe properties of nuclei
- Understand states of nuclear matter in astrophysical environments
How does that translate to low-energy nuclear theory?

Goals for low-energy nuclear theory

- Model the unknown nuclear Hamiltonian H
- Solve A-body problem and describe properties of nuclei
- Understand states of nuclear matter in astrophysical environments
Outline

1 Introduction
 • Basic facts about low-energy nuclear physics
 • Theoretical methods

2 Energy density functional methods
 • Sketch of the overall EDF formalism
 • Single-reference implementation: elements of formalism
 • Empirical energy functionals
 • Performances and limitations
 • Towards non-empirical energy functionals

3 Bibliography
Which theoretical method(s)?

Ab-initio methods

- Solve the N-body problem in terms of point-like nucleons $+ H(\Lambda)$

<table>
<thead>
<tr>
<th>Name</th>
<th>Short description</th>
<th>Variational</th>
<th>Scale as</th>
<th>Up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few-body (Faddeev...)</td>
<td>$H \Psi = E \Psi$</td>
<td>Yes</td>
<td>M^A</td>
<td>$A = 2-4$</td>
</tr>
<tr>
<td>Green-Function</td>
<td>$\Psi(\tau) = e^{-(H-E)\tau} \Psi_T$, GFMC</td>
<td>Yes</td>
<td>$\frac{M!}{(M-A)!A!}$</td>
<td>$A < 12$</td>
</tr>
<tr>
<td>No-core Shell Model</td>
<td>$H \Psi = E \Psi$</td>
<td>Yes</td>
<td>4^A</td>
<td>$A < 16$</td>
</tr>
<tr>
<td>Coupled-Cluster (CC)</td>
<td>$</td>
<td>\Psi\rangle = e^S</td>
<td>\Psi_0\rangle$</td>
<td>No</td>
</tr>
</tbody>
</table>

M : configuration space size

- Limited reach over the mass table

From D. Lacroix
Which theoretical method(s)?

- No “one size fits all” theory for nuclei
- All theoretical approaches need to be linked

Low-momentum interactions
Introduction

1. Basic facts about low-energy nuclear physics
2. Theoretical methods

Energy density functional methods

2.1. Sketch of the overall EDF formalism
2.2. Single-reference implementation: elements of formalism
2.3. Empirical energy functionals
2.4. Performances and limitations
2.5. Towards non-empirical energy functionals

Bibliography
Outline

1. Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2. Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3. Bibliography
Energy Density Functional method

Basic elements

- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices)
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

Pros

- Use of full single-particle space
- Collective picture but fully quantal
- Universality of the EDF ($A \gtrsim 16$)
- Ground-state description
- Smoothly varying correlations

Difficulties

- No universal parametrization
- Empirical \neq predictive power
- Spectroscopy
- Fluctuating correlations with A
- Limited accuracy ($\sigma_{2135}^{mass} \approx 700$ keV)

Low-momentum interactions
Energy Density Functional method

Basic elements

- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices)
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

Pros

- Use of full single-particle space
- Collective picture but fully quantal
- Universality of the EDF \((A \gtrsim 16)\)
- Ground-state description
- Smoothly varying correlations

Difficulties

- No universal parametrization
- Empirical \(\neq\) predictive power
- Spectroscopy
- Fluctuating correlations with \(A\)
- Limited accuracy \((\sigma_{2135}^{mass} \approx 700 \text{ keV})\)
Energy Density Functional method

Basic elements

- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices)
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

Pros

- Use of full single-particle space
- Collective picture but fully quantal
- Universality of the EDF ($A \gtrsim 16$)
- Ground-state description
- Smoothly varying correlations

Difficulties

- No universal parametrization
- Empirical ≠ predictive power
- Spectroscopy
- Fluctuating correlations with A
- Limited accuracy ($\sigma_{2135}^{mass} \approx 700$ keV)
Energy Density Functional method: single-reference implementation

One auxiliary vacuum $|\Phi\rangle$

$$E = \mathcal{E}[\rho, \kappa, \kappa^*]$$

\begin{align*}
\rho_{ij} &= \frac{\langle \Phi | a_j^\dagger a_i | \Phi \rangle}{\langle \Phi | \Phi \rangle} \\
\kappa_{ij} &= \frac{\langle \Phi | a_j a_i | \Phi \rangle}{\langle \Phi | \Phi \rangle} \\
\kappa_{ij}^* &= \frac{\langle \Phi | a_j^\dagger a_j^\dagger | \Phi \rangle}{\langle \Phi | \Phi \rangle}
\end{align*}

Correlations

- "Bulk" ~ 800 MeV
- "Static deformation" ~ 20 MeV

Broken symmetries

$N, Z, \tilde{P}, J^2, J_Z, \Pi, T^2$

Hartree-Fock-Bogoliubov

- Binding energies
- Shell structure
- Pairing gap
- Fission barriers
- Individual excitation
- Rotational excitation

Transition probabilities

- Selection rules lost

Low-momentum interactions
Energy Density Functional method: multi-reference implementation

Correlations
- "Collective fluctuations" \(\sim 4 \) MeV

\[E = \sum_{AB} f_{AB} \mathcal{E}[\rho^{AB}, \kappa^{AB}, \kappa^{BA*}] \]

Set of auxiliary vacua \(\{|\Phi_A\rangle\} \)

\[\rho_{ij}^{AB} = \frac{\langle \Phi_A|a_j^\dagger a_i|\Phi_B\rangle}{\langle \Phi_A|\Phi_B\rangle} \]

\[\kappa_{ij}^{AB} = \frac{\langle \Phi_A|a_j^\dagger a_i|\Phi_B\rangle}{\langle \Phi_A|\Phi_B\rangle} \]

\[\kappa_{ij}^{BA*} = \frac{\langle \Phi_A|a_i^\dagger a_j^\dagger|\Phi_B\rangle}{\langle \Phi_A|\Phi_B\rangle} \]

Symmetry restorations
- \(N, Z, \bar{P}, J^2, J_Z, \Pi, T^2 \)

Generator Coordinate Method
- \(\Delta_N, \Delta_Z, Q_{20}, Q_{30}, \cdots \)

Transition probabilities
- Selection rules restored

\[\epsilon[\rho, \kappa, \kappa^*; |q|] \]

Harmonic limit
- QRPA
- Bohr Hamiltonian

Observables
- Same as SR
- Vibration excitations
- Rotational bands of transitional nuclei
- LACM and shape coexistence

Low-momentum interactions
Energy Density Functional method: some relevant questions

- $\mathcal{E}[\rho, \kappa, \kappa^*]$ built empirically so far
- Effective separation of scales for correlations
 - Bulk ~ 800 Mev $\propto A$
 - Collective def. ≤ 20 Mev $= F(N_{val}, G_{deg})$
 - Collective fluct. ≤ 4 MeV $= G(N_{val}, G_{deg})$
- Observables impacted by correlation
 - Symmetry breaking
 - Collective fluctuation

Non empirical?
- What form of vacuum H?
- Can we relate $\mathcal{E}[\rho, \kappa, \kappa^*]$ to H?
- Needed to go through V_{eff}?
Outline

1. Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2. Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3. Bibliography
Elements of formalism

\[\mathcal{E}[\rho, \kappa^*, \kappa] = \text{functional of one-body density matrices} \]

\[\rho_{ji} \equiv \langle \Phi | b_{i}^{\dagger} b_{j} | \Phi \rangle ; \quad \kappa_{ji} \equiv \langle \Phi | b_{i} b_{j} | \Phi \rangle \]

defined in an arbitrary single-particle basis \(\{ b_{i}^{\dagger}; b_{i} \} \)
Single-reference EDF method

Elements of formalism

- $\mathcal{E}[\rho, \kappa^*, \kappa] =$ functional of one-body density matrices

- $|\Phi\rangle =$ auxiliary symmetry-breaking product state of reference

\[
|\Phi\rangle \equiv \prod_i \beta_i |0\rangle \\
\beta_i \equiv \sum_j U_{ji} b_j + V_{ji} b_j^+ \\
\text{and is a vacuum, i.e. } \beta_i |\Phi\rangle = 0 \ \forall i
\]

Low-momentum interactions
Single-reference EDF method

Elements of formalism

- $\mathcal{E}[\rho, \kappa^*, \kappa] = \text{functional of one-body density matrices}$
- $|\Phi\rangle = \text{auxiliary symmetry-breaking product state of reference}$
- Minimizing $\mathcal{E}[\rho, \kappa^*, \kappa]$ leads to Hartree-Fock-Bogoliubov-like equations

\[
\begin{pmatrix}
 h - \lambda & \Delta \\
 -\Delta^* & -h^* + \lambda
\end{pmatrix}
\begin{pmatrix}
 U_i \\
 V_i
\end{pmatrix}
= E_i
\begin{pmatrix}
 U_i \\
 V_i
\end{pmatrix}
\]

- Effective potentials and vertices are defined through

\[
h_{ij} \equiv \frac{\delta \mathcal{E}}{\delta \rho_{ji}} \equiv t_{ij} + \sum_{kl} \overline{v}_{ikjl}^p \rho_{lk} \quad ; \quad \Delta_{ij} \equiv \frac{\delta \mathcal{E}}{\delta \kappa_{ij}^*} \equiv \frac{1}{2} \sum_{kl} \overline{v}_{ijkl}^{pp} \kappa_{kl}
\]

- $\overline{v}^{ph} / \overline{v}^{pp} = \text{Consistent many-body expansion in terms of NN/NNN}$
- Quasiparticle w.f. (U_i, V_i), energy E_i, densities...
Outline

1 Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2 Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3 Bibliography
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Local Skyrme EDF for even-even nuclei ground-state

- Density matrices expressed in position \otimes spin \otimes isospin s.p. basis

 \[
 \rho_{\bar{r}\sigma q \bar{r}' \sigma' q} \equiv \langle \Phi | c^\dagger (\bar{r}' \sigma' q) c(\bar{r} \sigma q) | \Phi \rangle
 \]

 \[
 \kappa_{\bar{r}\sigma q \bar{r}' \sigma' q} \equiv \langle \Phi | c(\bar{r}' \sigma' q) c(\bar{r} \sigma q) | \Phi \rangle
 \]

- Local densities

 \[
 \rho_q(\bar{r}) \equiv \sum_\sigma \rho_{\bar{r}\sigma q \bar{r} \sigma q}
 \]

 Matter

 \[
 \tau_q(\bar{r}) \equiv \sum_\sigma \nabla \cdot \nabla' \rho_{\bar{r}\sigma q \bar{r}' \sigma q} \bigg|_{\bar{r}=\bar{r}'}
 \]

 Kinetic

 \[
 J_{q,\mu\nu}(\bar{r}) \equiv \frac{i}{2} \sum_{\sigma\sigma'} (\nabla' - \nabla)_\mu \rho_{\bar{r}\sigma q \bar{r}' \sigma' q}^\sigma' \sigma \bigg|_{\bar{r}=\bar{r}'}
 \]

 Spin-current tensor

 \[
 J_{q,\kappa}(\bar{r}) \equiv \sum_{\mu,\nu=x} \epsilon_{\kappa\mu\nu} J_{q,\mu\nu}(\bar{r})
 \]

 Spin-orbit

 \[
 \tilde{\rho}_q(\bar{r}) \equiv \sum_\sigma \kappa_{\bar{r}\sigma q \bar{r} \sigma q}^\sigma \sigma_z \bar{\sigma}
 \]

 Pair

- Build scalar EDF from such densities, e.g. at 2nd order in σ_ν and ∇

Low-momentum interactions
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Local Skyrme EDF for even-even nuclei ground-state

- Universal form ($A \gtrsim 16$) but no universal parametrization

$$
\mathcal{E}[\rho, \kappa, \kappa^*] = \sum_{qq'} \int d\vec{r} \left[C^{\rho \rho}_{qq'} \rho_q(\vec{r}) \rho_{q'}(\vec{r}) + C^{\rho \Delta \rho}_{qq'} \rho_q(\vec{r}) \Delta \rho_{q'}(\vec{r}) + C^{\rho \tau}_{qq'} \rho_q(\vec{r}) \tau_{q'}(\vec{r}) \\
+ C^{\rho \nabla \cdot J}_{qq'} \rho_q(\vec{r}) \vec{v} \cdot \vec{J}_{q'}(\vec{r}) + C^{JJ_c}_{qq'} \sum_{\mu, \nu = x}^z J_{q, \mu \nu}(\vec{r}) J_{q', \mu \nu}(\vec{r}) \\
+ C^{JJ_t}_{qq'} \sum_{\mu, \nu = x}^z \left[J_{q, \mu \nu}(\vec{r}) J_{q', \nu \mu}(\vec{r}) + J_{q, \mu \nu}(\vec{r}) J_{q', \nu \mu}(\vec{r}) \right] \right] \\
+ \sum_q \int d\vec{r} C^{\rho \bar{\rho}}_{qq} |\bar{\rho}_q(\vec{r})|^2 + \text{additional terms involving gradients}
$$

- Density-dependent couplings, i.e. $C^{ff'}_{qq'}$ may depend on \vec{r} as well
- Fitted on INM OES and selection of finite nuclei data
- Usually derived from the density-dependent Skyrme+DDD "interaction"
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Local Skyrme EDF for even-even nuclei ground-state

- Universal form ($A \gtrsim 16$) but no universal parametrization

\[
\mathcal{E}[\rho, \kappa, \kappa^*] = \sum_{qq'} \int d\vec{r} \left[C_{qq'}^{\rho\rho} \rho_q(\vec{r}) \rho_{q'}(\vec{r}) + C_{qq'}^{\rho\Delta\rho} \rho_q(\vec{r}) \Delta \rho_{q'}(\vec{r}) + C_{qq'}^{\rho\tau} \rho_q(\vec{r}) \tau_{q'}(\vec{r}) \right. \\
+ \left. C_{qq'}^{\rho \nabla J} \rho_q(\vec{r}) \nabla \cdot \vec{J}_{q'}(\vec{r}) + C_{qq'}^{JJ_c} \sum_{\mu, \nu = x}^z J_{q,\mu\nu}(\vec{r}) J_{q',\mu\nu}(\vec{r}) \right. \\
+ \left. C_{qq'}^{JJ_t} \sum_{\mu, \nu = x}^z \left[J_{q,\mu\mu}(\vec{r}) J_{q',\nu\nu}(\vec{r}) + J_{q,\mu\nu}(\vec{r}) J_{q',\nu\mu}(\vec{r}) \right] \right]
\]

\[+ \sum_q \int d\vec{r} \, C_{qq}^{\tilde{\rho}\tilde{\rho}} |\tilde{\rho}_q(\vec{r})|^2 + \text{additional terms involving gradients}\]

- Density-dependent couplings, i.e. $C_{qq'}^{ff'}$ may depend on \vec{r} as well
- Fitted on INM OES and selection of finite nuclei data
- Usually derived from the density-dependent Skyrme+DDD "interaction"
Empirical parameterizations of $E[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Local Skyrme EDF for even-even nuclei ground-state

- Universal form ($A \gtrsim 16$) but no universal parametrization

$$E[\rho, \kappa, \kappa^*] = \sum_{qq'} \int d\vec{r} \left[C_{qq'}^{\rho_\rho} \rho_q(\vec{r}) \rho_{q'}(\vec{r}) + C_{qq'}^{\rho_\Delta} \rho_q(\vec{r}) \Delta \rho_{q'}(\vec{r}) + C_{qq'}^{\rho_\tau} \rho_q(\vec{r}) \tau_{q'}(\vec{r}) \right. $$

$$+ C_{qq'}^{\rho_\nabla J} \rho_q(\vec{r}) \nabla \cdot \vec{J}_{q'}(\vec{r}) + C_{qq'}^{JJ_c} \sum_{\mu, \nu = x} J_q,\mu \nu(\vec{r}) J_{q'},\mu \nu(\vec{r}) \bigg]$$

$$+ C_{qq'}^{JJ_t} \sum_{\mu, \nu = x} \left[J_q,\mu \mu(\vec{r}) J_{q'},\nu \nu(\vec{r}) + J_q,\mu \nu(\vec{r}) J_{q'},\nu \mu(\vec{r}) \right] \bigg]$$

$$+ \sum_q \int d\vec{r} C_{qq}^{\tilde{\rho} \tilde{\rho}} |\tilde{\rho}_q(\vec{r})|^2 + \text{additional terms involving gradients}$$

- Density-dependent couplings, i.e. $C_{qq'}^{eff}$ may depend on \vec{r} as well
- Fitted on INM OES and selection of finite nuclei data
- Usually derived from the density-dependent Skyrme+DDD "interaction"
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Density-dependent Skyrme "force" for the particle-hole part

- Schematic effective vertex, i.e. a convenient intermediate to generate $\mathcal{E}^{\rho\rho 1+\alpha}$

$$
\begin{align*}
\nu_{\text{cent}} &= \ t_0 \ (1 + x_0 P_\sigma) \ \delta(\vec{r}) \\
&+ \ \frac{1}{2} \ t_1 \ (1 + x_1 P_\sigma) \ [\delta(\vec{r}) \ \vec{k}'^2 + \vec{k}'^2 \ \delta(\vec{r})] \\
&+ \ \ t_2 \ (1 + x_2 P_\sigma) \ \vec{k}' \cdot \delta(\vec{r}) \ \vec{k} \\
&+ \ \frac{1}{6} \ t_3 \ (1 + x_3 P_\sigma) \ \rho_0^\alpha(\vec{r}) \ \delta(\vec{r})
\end{align*}
$$

$$
\begin{align*}
\nu_{\text{ls}} &= \ i W_0 \ (\vec{\sigma}_1 + \vec{\sigma}_2) \ \vec{k}' \wedge \delta(\vec{r}) \ \vec{k} \\
\nu_{\text{tens}} &= \ \frac{t_e}{2} \ \left\{ \left[3 (\vec{\sigma}_1 \cdot \vec{k}') (\vec{\sigma}_2 \cdot \vec{k}') - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \ \vec{k}'^2 \right] \ \delta(\vec{r}) \\
&+ \ \delta(\vec{r}) \ \left[3 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \ \vec{k}^2 \right] \right\} \\
&+ \ \ t_o \ \left\{ 3 (\vec{\sigma}_1 \cdot \vec{k}') \ \delta(\vec{r}) (\vec{\sigma}_2 \cdot \vec{k}) - (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \ \vec{k}' \cdot \delta(\vec{r}) \ \vec{k} \right\}
\end{align*}
$$

- Only $C_{\rho\rho}^\rho_{\alpha\alpha'}$ depends on the density
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Density-dependent Skyrme "force" for the particle-hole part

- Schematic effective vertex, i.e. a convenient intermediate to generate $\mathcal{E}^{\rho\rho^{1+\alpha}}$

Density-dependent delta "interaction" for the particle-particle part

- Schematic effective vertex, i.e. a convenient intermediate to generate $\mathcal{E}^{\kappa\kappa}$

\[
\tilde{v}_{\text{cent}} = \frac{1}{2} \tilde{t}_0 \left(1 - \eta \frac{\rho_0(\vec{r})}{\rho_{\text{sat}}} \right) (1 - P_{\sigma}) \delta(\vec{r})
\]

- $C_{qq}^{\tilde{\rho}\tilde{\rho}}(\vec{r})$ is constant over the "Volume" ($\eta = 0$) or "Surface"-peaked ($\eta = 1$)

- Pairing correlations
 - Are characterized by the dependence of the EDF on $\kappa/\tilde{\rho}$
 - Are responsible for the superfluid nature of (most of the) nuclei
 - Impact low-energy properties of finite nuclei and neutron stars
 - Reflect (mostly) the strong NN attraction in the 1S_0 channel

Low-momentum interactions
Empirical parameterizations of $\mathcal{E}[\rho, \kappa, \kappa^*]$; e.g. Skyrme or Gogny

Density-dependent Skyrme "force" for the particle-hole part
- Schematic effective vertex, i.e. a convenient intermediate to generate $\mathcal{E}^{\rho_1+\alpha}$

Density-dependent delta "interaction" for the particle-particle part
- Schematic effective vertex, i.e. a convenient intermediate to generate $\mathcal{E}^{\kappa\kappa}$

Energy density functional $\mathcal{E}[\rho, \kappa, \kappa^*]$
- **Does NOT mimic a Hartree-Fock approximation in terms of NN+NNN**
- **Mocks up correlations BEYOND Hartree-Fock (see Lecture 3)**
 - Through rich (enough?) functional form
 - Through fitting of parameters
- **Not all correlations are easily resummed into $\mathcal{E}[\rho, \kappa, \kappa^*]$ itself**
 - Symmetry breaking captures important correlations
 - Need for explicit configuration mixing = Multi-reference EDF method
Single-particle field h^q

h^q from the Skyrme EDF

$$h_{ij}^q \equiv \frac{\delta E}{\delta \rho_{ji}^q} = \int d\tilde{r} \, \varphi_i^+(\tilde{r}) \, h^q(\tilde{r}) \, \varphi_j(\tilde{r})$$

where the local field takes the form

$$h_q(\tilde{r}) \equiv -\nabla \cdot B_q(\tilde{r}) \nabla + U_q(\tilde{r}) - \frac{i}{2} \sum_{\mu,\nu=x}^z \left[W_{q,\mu\nu}(\tilde{r}) \nabla_\mu + \nabla_\mu W_{q,\mu\nu}(\tilde{r}) \right] \sigma_\nu$$

with multiplicative potentials defined as

$$U_q(\tilde{r}) \equiv \frac{\delta E}{\delta \rho^q(\tilde{r})}$$

$$B_q(\tilde{r}) \equiv \frac{\delta E}{\delta \tau^q(\tilde{r})}$$

$$W_{q,\mu\nu}(\tilde{r}) \equiv \frac{\delta E}{\delta J_{q,\mu\nu}(\tilde{r})}$$

Low-momentum interactions
Single-particle field h^q

h^q drives the correlated (!) s.p. motion

- h^q provides the "shell structure"
 \[
 h^q(\vec{r'}) \varphi_i(\vec{r'}) \equiv \epsilon_i \varphi_i(\vec{r'})
 \]

 Separation energies
 - $\epsilon_p \approx \mathcal{E}_p^{N+1} - \mathcal{E}_0^N \approx E_p^{N+1} - E_0^N$
 - $\epsilon_h \approx \mathcal{E}_0^N - \mathcal{E}_h^{N-1} \approx E_0^N - E_h^{N-1}$

 Excitation energies
 - $\epsilon_p - \epsilon_h \approx \mathcal{E}_{ph}^N - \mathcal{E}_0^N \approx E_{ph}^N - E_0^N$

- Keep in mind missing correlations
 - Symmetry breaking
 - Pairing via breaking of N
 - Quadrupole via breaking of J^2
 - Configuration mixing
 - Symmetry restorations
 - Dynamical part-vib coupling

Low-momentum interactions
Pairing field Δ^q

$\Delta^q_{ij} \equiv \frac{\delta \mathcal{E}}{\delta \kappa^q_{ij}} = \int d\vec{r} \left[\varphi_i^\dagger(\vec{r} q) \Delta_q(\vec{r}) \varphi_j^*(\vec{r} q) - \varphi_j^\dagger(\vec{r} q) \Delta_q(\vec{r}) \varphi_i^*(\vec{r} q) \right]$ where the local field takes the form

$\Delta_q(\vec{r}) = -\tilde{U}_q(\vec{r}) i \sigma_y + \cdots$

with multiplicative potentials defined as

$\tilde{U}_q(\vec{r}) \equiv \frac{\delta \mathcal{E}}{\delta \tilde{\rho}_q^*(\vec{r})}$

\[... \]

- UV divergence of local pairing EDF must be regularized/renormalized
Pairing field Δ^q

Δ^q drives pair scattering

- Correlates nucleon pairs in time-reversal states
- Results in smoothed-out single-particle occupations (canonical basis)

\[
\rho_{ii} = v_i^2 = \frac{1}{2} \left[1 - \frac{\epsilon_i - \epsilon_F}{\sqrt{(\epsilon_i - \epsilon_F)^2 + \Delta_{ii}^2}} \right]
\]
Hartree-Fock-Bogoliubov scheme

Hartree-Fock-Bogoliubov eigenvalue problem

- Modified v_i^2 feedback onto h^q which feedbacks onto pair scattering...

![Diagram of the Hartree-Fock-Bogoliubov scheme]

- Quasi-particle energy $E_i \approx \sqrt{(\epsilon_i - \epsilon_F)^2 + \Delta_{ii}^2} \geq \Delta_F$

Low-momentum interactions
Hartree-Fock-Bogoliubov scheme

Hartree-Fock-Bogoliubov eigenvalue problem

- Pairing changes the nature of elementary excitations $|\Phi_{ij}\rangle = \beta_i^\dagger \beta_j^\dagger |\Phi\rangle$

$$\mathcal{E}_{ij}^{\langle N \rangle} - \mathcal{E}_0^{\langle N \rangle} = E_i + E_j \xrightarrow{\Delta=0} |\epsilon_p - \epsilon_F| + |\epsilon_h - \epsilon_F| = \epsilon_p - \epsilon_h$$

- Spectrum E_i versus $|\epsilon_i - \epsilon_F|$ with
 - $\Delta = 0$: SP
 - $\Delta = 0$: QP
 - $\Delta \neq 0$

- Gap opens at low energy + mix of hole- and particle-like excitations

Low-momentum interactions
Outline

1. Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2. Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3. Bibliography
Performance of empirical EDFs (spherical HFB calculations)

Performance of existing EDFs
- Tremendous over known nuclei
- Especially for bulk properties
- Role of symmetry breaking

"Asymptotic freedom"
- Into "the next major shell"
- For most observables
- Signals poor predictive power

Spectroscopy
- The real challenge for the future...

Binding energy in Sn, Dy and Pb isotopes

[DFTM pairing
--- Sn-SLY4 --- Sn-SKP
-. Dy-SLY4 --- Dy-SKP
--- Pb-SLY4 --- Pb-SKP

Exp-Sn Exp-Dy Exp-Pb

[J. Sadoudi, T. D., unpublished]

Low-momentum interactions
Performance of empirical EDFs (spherical HFB calculations)

Performance of existing EDFs

- Tremendous over known nuclei
- Especially for bulk properties
- Role of symmetry breaking

"Asymptotic freedom"

- Into "the next major shell"
- For most observables
- Signals poor predictive power

Spectroscopy

- The real challenge for the future...

Charge radius in Sn, Dy and Pb isotopes

![Graph showing charge radius vs. mass number A for Sn, Dy, and Pb isotopes with different EDFs and experimental data.](image)
Performance of empirical EDFs (spherical HFB calculations)

Performance of existing EDFs
- Tremendous over known nuclei
- Especially for bulk properties
- Role of symmetry breaking

"Asymptotic freedom"
- Into "the next major shell"
- For most observables
- Signals poor predictive power

Binding energy in Sn isotopes

- [J. Sadoudi, T. D., unpublished]
Performance of empirical EDFs (spherical HFB calculations)

Performance of existing EDFs
- Tremendous over known nuclei
- Especially for bulk properties
- Role of symmetry breaking

"Asymptotic freedom"
- Into "the next major shell"
- For most observables
- Signals poor predictive power

Pairing gaps in Sn isotopes

Spectroscopy
- The real challenge for the future...

Low-momentum interactions
Performance of empirical EDFs (spherical HFB calculations)

Performance of existing EDFs

- Tremendous over known nuclei
- Especially for bulk properties
- Role of symmetry breaking

"Asymptotic freedom"

- Into "the next major shell"
- For most observables
- Signals poor predictive power

Spectroscopy

- The real challenge for the future...

Two-neutron sep. energy in Sn isotopes

Sn isotopes DFTV pairing

- SLY4
- rho160
- T26
- T6

Exp

[J. Sadoudi, T. D., unpublished]
Performance of empirical EDFs

Performance of existing EDFs

- Tremendous successes for known nuclei
- "Asymptotic freedom" as one enters "the next major shell"

Crucial undergoing works

- **Enrich the analytical structure of empirical functionals**
 - Tensor terms, e.g. [T. Lesinski et al., PRC76, 014312]
 - Higher-order derivatives [B. G. Carlsson et al., PRC78, 044326]
 - $\rho_n - \rho_p$ dependence to $C_{qq}^{\tilde{\rho}\tilde{\rho}}(\vec{r})$, e.g. [J. Margueron et al., PRC77, 054309]

- Improve fitting protocols = data, algorithm and post-analysis
Performance of empirical EDFs

Performance of existing EDFs
- Tremendous successes for known nuclei
- "Asymptotic freedom" as one enters "the next major shell"

Crucial undergoing works
- **Enrich the analytical structure of empirical functionals**
 - Tensor terms, e.g. [T. Lesinski et al., PRC76, 014312]
 - Higher-order derivatives [B. G. Carlsson et al., PRC78, 044326]
 - $\rho_n - \rho_p$ dependence to $C_{qq}(\vec{r})$, e.g. [J. Margueron et al., PRC77, 054309]
- Improve fitting protocols = data, algorithm and post-analysis

One can also propose a complementary approach...
- Data not always constrain unambiguously non-trivial characteristics of EDF
- Interesting not to rely entirely on trial-and-error and fitting data
Outline

1 Introduction
 - Basic facts about low-energy nuclear physics
 - Theoretical methods

2 Energy density functional methods
 - Sketch of the overall EDF formalism
 - Single-reference implementation: elements of formalism
 - Empirical energy functionals
 - Performances and limitations
 - Towards non-empirical energy functionals

3 Bibliography
Constructing non-empirical EDFs for nuclei

Long term objective
Build non-empirical EDF in place of existing models
Constructing non-empirical EDFs for nuclei

Long term objective
Build non-empirical EDF in place of existing models

Empirical
Empirical
Non-empirical
Low-k NN+NNN
QCD / χ-EFT

Finite nuclei and extended nuclear matter

Low-momentum interactions
Long term project and collaboration

Design *non-empirical* Energy Density Functionals

- Bridge with *ab-initio* many-body techniques
- Calculate properties of heavy/complex nuclei from NN+NNN
- Controlled calculations with theoretical error bars

SPhN
T. Duguet, J. Sadoudi, V. Soma

IPNL
K. Bennaceur, J. Meyer

TRIUMF
A. Schwenk, K. Hebeler, S. Baroni

NSCL
S. K. Bogner, B. Gebremariam

OSU
R. J. Furnstahl, L. Platter

ORNL
T. Lesinski

JULICH
A. Nogga
Outline

1 Introduction
- Basic facts about low-energy nuclear physics
- Theoretical methods

2 Energy density functional methods
- Sketch of the overall EDF formalism
- Single-reference implementation: elements of formalism
- Empirical energy functionals
- Performances and limitations
- Towards non-empirical energy functionals

3 Bibliography
Selected bibliography

P. Ring, P. Schuck,
The nuclear many-body problem, 1980, Springer-Verlag, Berlin

M. Bender, P.-H. Heenen, P.-G. Reinhard,
Rev. Mod. Phys. 75 (2003) 121