

Status of the HRS

Teresa Kurtukian-Nieto CEN Bordeaux-Gradignan

SPIRAL2-WEEK

Caen, January 28th 2010

High Resolution Separator HRS Outline

- v HRS: Design Goal
- Initial Implementation
- v New design: HRS-U180
- v Ion optics:
 - ü COSY Infinity calculations
 - ü Optics discussion
- v Performance study using Raytracing Turtle
- v Summary and outlook

HRS: Design goal

High resolution separator with enough mass resolving power to allow isobaric separation.

Resolving Power

$$R = \frac{m}{\Delta m} \sim 20000$$

$$R = \frac{(x \mid \delta)}{2x_{00}(x \mid x) + \Delta}$$

HRS: initial conception

HRS: "C" and "Alpha"

FIRST DESIR-HRS WORKSHOP

- ▼ November 12th-13th 2009, CENBG
- v Participants:
 - ü Cary Davids ANL, USA
 - ü Rich Baartman TRIUMF, Canada
 - ü Helmut Weick, GSI, Germany
 - ü François Méot, Grenoble, France
 - ü Maurice Duval, GANIL, France
 - ü Franck Varenne, GANIL, France
 - ü David Lunney, CSNSM, France
 - ü DESIR-HRS Bordeaux Team

HRS: "U180"

The quadrupole doublet matching section produces a ribbon-shaped beam, so y-angles are small, minimizing b aberrations

The first quadrupole diverges in x and converges in y, giving a small y size which minimizes y aberrations

The large x area in the magnets gives mass dispersion

- v Focus conditions in centre: (a/a)=(y/b)=(b/y)=0
- The reverse matching section transforms the ribbon-shaped beam back to a circular crosssection, allowing a 1 mm x-selection slit at the focal plane
- v The 2 sextupoles and 1 multipole to correct aberrations to 5th order
- The two electrical benders transport the beam back to the 1+ Line

HRS U180

Transfer matrix						
	(x,)	(a,)	(y,)	(b,)
\mathbf{x}	-1.0	-4.5		0.0	0.0	
a (0.3E-7	-1.0		0.0	0.0	
У	0.0	0.0		1.0	23.2	
b	0.0	0.0		-0.2E-7	1.0	\supset
δm	-31.5	-70.9		0.0	0.0	

- $\ddot{u} (x | \delta) = -31.5 \text{ cm/}\%$
- ü Mirror symmetric
- ü point-to-point both x and y

R ~ 31000

COSY INFINITY X and Y motion

Ion optics discussion

- ${f v}$ Symmetric design helps to minimize aberrations.
- v Large mass dispersion $(x|\delta)$ and small aberration coefficients are obtained by increasing the incident and exit angles at the boundary of a magnetic sector.
 - ü 36.5° was chosen for the 90° bending dipoles
- v Quadrupoles are used as the focusing mode in the y-direction and the defocusing mode in the x-direction.
 - \ddot{u} By choosing suitable distances and fitting the quadrupole strengths, a beam profile in the dipole gap can be made very wide in the x-direction and narrow in the y-direction, attaining two advantages simultaneously:
 - * High transmission
 - * Small image magnification (x|x) to attain high resolution

Performance study using Raytracing Turtle

X-Y phase space for isobars with mass deviations -1/20000, 0, +1/20000

Cost Estimation

The Cost Estimation is shown in the following table:

concept	number	total cost (€)
Dipole	2	388.744,08
Long quadrupoles	4	278.121,03
Short quadrupoles	2	156.636,31
Sextupoles	2	100.533,15
Multipoles	1	66.481,58
Vacuum chambers	3	92.087,15
Vacuum system	1	130.200,00
Electrostatic correctors	1	56.875,00
Power sources	6	302.709,33
TOTAL VAT EXCLUDED		1.572.387,63

Prices include conceptual design, manufacturing design and manufacturing. Turnkey

Misalignment effects on mass resolution

Phase spaces calculated to 5th order

50000 particles with mass deviations -1/20000, 0, +1/20000

A shift in the multipole of 0.2 mm in the x-direction induces a deformation in the x-a phase space which is responsible for the blur in the final mass separation.

Summary

- V A new ion-optical design concept for the HRS, the HRS-U180, is currently under study as a result of the discussion with experts at the First HRS Workshop held at CENBG last November.
- v This design gives a compact configuration, high transmission and high resolving power, providing monoisotopic beams of exotic nuclides.
- v This compact configuration is less expensive, concerning both installation and operation costs.
- $_{
 m V}$ A beam emittance of the order of <3 $_{\pi}$ mm mrad and an energy dispersion of about 1 eV are needed. These requirements will be fulfilled with the RFQ cooler SHIRAC

Next steps

- v By the end of the next week the specifications for the dipole magnets will be sent to M. Duval who will calculate the corresponding 3D TOSCA maps.
- We estimate to have this calculations ready by the end of February and start the raytracing evaluation to study the performance of the system.
- f v End of march: first document on the definition of the size envelope of the HRS.
- f v October: we expect to have the final design.
- v End of 2010 Technical Specifications finished. Order dipole magnets 2011.
- v Beginning of 2013 mounting and test of the HRS at Bordeaux.

DESIR-HRS working group @CENBG

- ü Blank, Bertram
- ü Delalée, Franck
- ü Kurtukian-Nieto, Teresa
- ü Serani, Laurent

Backup slides

HRS C135

Object plane

 $\ddot{u} (x|\delta) = -24 \text{ cm/}\%$

ü Mirror symmetric

ü point-to-point both x and y

COSY INFINITY X and Y motion

HRS Alpha Asymmetric: short

 \ddot{u} (x| δm) ~ 9 cm/%

ü asymmetric for M plane

ü symmetric for mid-plane

ü (x|x) ~ 0.4

ü point-to-point both x and y

R ~ 21750

HRS Alpha Asymmetric: Large

Transfer matrix :					
	(x,)	(a,)	(y,)	(b,)	
X	0.4043	5.8394	0.0000	0.0000	
а	-0.53E-7	2.4732	0.0000	0.0000	
У	0.0000	0.0000	26.19	-0.2400	
b	0.0000	0.0000	4.1672	-0.16E-10	
δn	n 10.23	0.49E-8	0.0000	0.0000	

- $\ddot{u} (x | \delta m) \sim 10 cm/\%$
- ü asymmetric for M plane
- ü symmetric for mid-plane
- ü (x|x) ~ 0.4
- ü point-to-point in x

 $R \sim 25500$

COSY INFINITY X and Y motion

HRS Alpha Symmetric

- ü Same as HRS C135
- ü Compensation triplet
- ü Doubly symmetric

R ~ 24000

Transfer matrix				
	(x,)	(a,)	(y,)	(b,)
X	-1.0000	-4.5202	0.0000	0.0000
а	0.28E-7	-0.9999	0.0000	0.0000
у	0.0000	0.0000	1.0000	0.25E-7
b	0.0000	0.0000	-0.12E-8	1.0000
δm	-24.10	-54.47	0.0000	0.0000

Tran	Transfer matrix				
	(x,)	(a,)	(y,)	(b,)	
X	0.3787	-5.9685	0.0000	0.0000	
а	-0.11E-7	2.6407	0.0000	0.0000	
У	0.0000	0.0000	-0.8472	-4.3693	
b	0.0000	0.0000	0.2289	0.38E-6	
δm	9.1254	0.34E-5	0.0000	0.0000	